Text Exemplar for Grades 6-8 Informational Text

That much-reviled bottleneck known as the American supermarket checkout lane would be an even greater exercise in frustration were it not for several technological advances. The Universal Product Code and the decoding laser scanner, introduced in 1974, tally a shopper’s groceries far more quickly and accurately than the old method of inputting each purchase manually into a cash register. But beeping a large order past the scanner would have led only to a faster pileup of cans and boxes down the line, where the bagger works, had it not been for the introduction, more than a century earlier, of an even greater technological masterpiece: the square-bottomed paper bag.

The geometry of paper bags continues to hold a magical appeal for those of us who are fascinated by how ordinary things are designed and made. Originally, grocery bags were created on demand by storekeepers, who cut, folded, and pasted sheets of paper, making versatile containers into which purchases could be loaded for carrying home. The first paper bags manufactured commercially are said to have been made in Bristol, England, in the 1840s. In 1852, a “Machine for Making Bags of Paper” was patented in America by Francis Wolle, of Bethlehem, Pennsylvania. According to Wolle’s own description of the machine’s operation, “pieces of paper of suitable length are given out from a roll of the required width, cut off from the roll and otherwise suitably cut to the required shape, folded, their edges pasted and lapped, and formed into complete and perfect bags.” The “perfect bags” produced at the rate of eighteen hundred per hour by Wolle’s machine were, of course, not perfect, nor was his machine. The history of design has yet to see the development of a perfect object, though it has seen many satisfactory ones and many substantially improved ones. The concept of comparative improvement is embedded in the paradigm for invention, the better mousetrap. No one is ever likely to lay claim to a “best” mousetrap, for that would preclude the inventor himself from coming up with a still better mousetrap without suffering the embarrassment of having previously declared the search complete. As with the mousetrap, so with the bag.

Text Exemplar for Grades 9-10 Informational Text

A medieval fisherman is said to have hauled up a three-foot-long cod, which was common enough at the time. And the fact that the cod could talk was not especially surprising. But what was astonishing was that it spoke an unknown language. It spoke Basque.

This Basque folktale shows not only the Basque attachment to their orphan language, indecipherable to the rest of the world, but also their tie to the Atlantic cod, Gadus morhua, a fish that has never been found in Basque or even Spanish waters.

The Basques are enigmatic. They have lived in what is now the northwest corner of Spain and a nick of the French southwest for longer than history records, and not only is the origin of their language unknown, but also the origin of the people themselves remains a mystery also. According to one theory, these rosy-cheeked, dark-haired, long-nosed people where the original Iberians, driven by invaders to this mountainous corner between the Pyrenees, the Cantabrian Sierra, and the Bay of Biscay. Or they may be indigenous to this area.
They graze sheep on impossibly steep, green slopes of mountains that are thrilling in their rare, rugged beauty. They sing their own songs and write their own literature in their own language, Euskera. Possibly Europe’s oldest living language, Euskera is one of only four European languages—along with Estonian, Finnish, and Hungarian—not in the Indo-European family. They also have their own sports, most notably jai alai, and even their own hat, the Basque beret, which is bigger than any other beret.

Text Exemplars for Grades 11--CCR Informational Text

From Chapter 2: “The Best Government on God’s Footstool”

One of the questions often asked a Civil War historian is, “Why did the North fight?” Southern motives seem easier to understand. Confederates fought for independence, for their own property and way of life, for their very survival as a nation. But what did the Yankees fight for? Why did they persist through four years of the bloodiest conflict in American history, costing 360,000 northern lives—not to mention 260,000 southern lives and untold destruction of resources? Puzzling over this question in 1863, Confederate War Department clerk John Jones wrote in his diary: “Our men must prevail in combat, or lose their property, country, freedom, everything.... On the other hand the enemy, in yielding the contest, may retire into their own country, and possess everything they enjoyed before the war began.”

If that was true, why did the Yankees keep fighting? We can find much of the answer in Abraham Lincoln’s notable speeches: the Gettysburg Address, his first and second inaugural addresses, the peroration of his message to Congress on December 1, 1862. But we can find even more of the answer in the wartime letters and diaries of the men who did the fighting. Confederates who said that they fought for the same goals as their forebears of 1776 would have been surprised by the intense conviction of the northern soldiers that they were upholding the legacy of the American Revolution.

Archimedes and Practically Infinite Numbers

There is a fundamental property of numbers named after the Greek mathematician Archimedes which states that any number, no matter how huge, can be exceeded by adding together sufficiently many of any smaller number, no matter how tiny. Though obvious in principle, the consequences are sometimes resisted, as they were by the student of mine who maintained that human hair just didn’t grow in miles per hour. Unfortunately, the nanoseconds used up in a simple computer operation do add up to lengthy bottlenecks on intractable problems, many of which would require millennia to solve in general. It takes some getting accustomed to the fact that the minuscule times and distances of microphysics as well as the vastness of astronomical phenomena share the dimensions of our human world.

It’s clear how the above property of numbers led to Archimedes’ famous pronouncement that given a fulcrum, a long enough lever, and a place to stand, he alone could physically lift the earth. An awareness of the additivity of small quantities is lacking in innumerates, who don’t seem to believe that their little aerosol cans of hairspray could play any role in the depletion of the ozone layer of the atmosphere, or that their individual automobile contributes anything to the problem of acid rain.
Planning for Explicit Instruction of Academic Vocabulary

Academic vocabulary word __________________________

What purpose will you set for students' learning?
(What is the learning objective and why is it important?)

What are some critical details that define the new concept?

What are some highly specific examples that students are likely to be familiar with?

What are some highly specific non-examples that students are likely to be familiar with?